Respuesta :

Solution:

This is a fractional algebraic equation.

To solve it, we simplify the left-hand side of the equation as a single fraction and then equate to the right-hand side to get the solution.

[tex]\begin{gathered} \frac{x}{6}+\frac{x}{3}=\frac{3}{4} \\ \\ U\sin g\text{ the Lowest Common Multiple (LCM) of the left-hand side,} \\ \text{The }LCM\text{ is 6} \\ \frac{x+2x}{6}=\frac{3}{4} \\ \frac{3x}{6}=\frac{3}{4} \\ \text{Cross multiplying the equation;} \\ 4\times3x=3\times6 \\ 12x=18 \\ \text{Dividing both sides by 12;} \\ x=\frac{18}{12} \\ x=\frac{3}{2} \end{gathered}[/tex]

Therefore, the solution to the equation is;

[tex]x=\frac{3}{2}[/tex]