A positive integer is 5 less than another. If the sum of the reciprocal of the smaller andtwice the reciprocal of the larger is 11/14, find the two integers

Respuesta :

Given that a positive interger is 5 less than another integer, we have the equation:

a = b - 5

Where a represents the smaller interger and b represents the larger interger.

Also, the sum of the reciprocal of the smaller interger and twice the reciprocal of the larger is 11/14. we have the equation:

[tex]\frac{1}{a}+(2\times\frac{1}{b})=\frac{11}{14}[/tex]

Thus, we have the system of equations:

[tex]\begin{gathered} a=b-5 \\ \\ \frac{1}{a}+\frac{2}{b}=\frac{11}{14} \end{gathered}[/tex]

Let's solve for a and b simultaneously using substitution method.

Susbtitue (b - 5) for a in equation 2:

[tex]\frac{1}{b-5}+\frac{2}{b}=\frac{11}{14}[/tex]

Solving further:

[tex]\begin{gathered} \frac{1}{b-5}+\frac{2}{b}=\frac{11}{14} \\ \\ \frac{b+2(b-5)}{b(b-5)}=\frac{11}{14} \\ \\ \frac{b+2b-10}{b(b-5)}=\frac{11}{14} \\ \\ \frac{3b-10}{b(b-5)}=\frac{11}{14} \end{gathered}[/tex]

Cross multiply:

[tex]\begin{gathered} 14(3b\text{ -10) = 11(b(b-5))} \\ \\ 42b-140=11(b^2-5b) \\ \\ 42b-140=11b^2-55b \\ \\ -140=11b^2-55b-42b \\ \\ 11b^2-55b-42b=-140 \\ \\ 11b^2-97b=-140 \end{gathered}[/tex]

Equate to zero:

[tex]11b^2-97b+140=0[/tex]

Factor the equation by grouping:

[tex]\begin{gathered} 11b^2-20b-77b+140=0 \\ \\ b(11b-20)-7(11b-20)=0 \\ \\ We\text{ have:} \\ (b-7)(11b-20) \end{gathered}[/tex]

Equate each factor to zero and solve for b:

[tex]\begin{gathered} b-7=0 \\ \\ \text{ b=7} \end{gathered}[/tex][tex]\begin{gathered} 11b-20=0 \\ \\ 11b=0+20 \\ \\ 11b=20 \\ \\ b=\frac{20}{11} \end{gathered}[/tex]

We have the possible values for:

[tex]b=7,\text{ }\frac{20}{11}[/tex]

Substitute 7 and 20/11 for b in equation 1 to find a:

[tex]\begin{gathered} a=b-5 \\ \\ a=7-5 \\ \\ a=2 \end{gathered}[/tex][tex]\begin{gathered} a=b-5 \\ \\ a=\frac{20}{11}-5 \\ \\ a=-\frac{35}{11} \end{gathered}[/tex]

Thus, we have:

[tex]\begin{gathered} \text{When a = 2, b = }7 \\ \\ \text{When a = -}\frac{35}{11},b=\frac{20}{11} \end{gathered}[/tex]

We are told the value of a is a positive integer, let's take the positive values.

Thus, we have:

a = 2, b = 7

The larger interger is 7, while the smaller interger is 2

ANSWER:

Larger interger = 7

Smaller interger = 2