The general formula for a straight line function is given by:
[tex]y=mx+b[/tex]We can pick any of the ordered pair to calculate the gradient, we have"
[tex]\begin{gathered} slope(m)=\frac{\Delta y}{\Delta x}=\frac{y_2-y_1}{x_2-x_1}_{} \\ (x,y)=(-10,-4),(-5,-2) \\ m=\frac{-4--2}{-10-5}=\frac{2}{-15}=-\frac{2}{15} \\ m=-\frac{2}{15} \end{gathered}[/tex]We proceed by using the point slop formula to solve for b:'
[tex]\begin{gathered} y-y_1=m(x-x_1) \\ y--4=-\frac{2}{15}(x--10)\Rightarrow y+4=-\frac{2}{15}x-\frac{4}{3} \\ y+4=-\frac{2}{15}x-\frac{4}{3}\Rightarrow y=-\frac{2}{15}x-\frac{16}{3} \\ y=-\frac{2}{15}x-\frac{16}{3} \\ \\ y=mx+b \\ b=-\frac{16}{3} \\ b\ne0 \\ \therefore b\text{ is }nonproportional \end{gathered}[/tex]