given the following matrices, if possible, determine 4A. if not, state “not possible”

Recall that the product of a scalar and a matrix A is a matrix with entries equal to the product of the scalar and the value in that entry matrix A.
Therefore:
[tex]4A=4\begin{bmatrix}-3{} & {}-4 & {} \\ {-3} & -5 & {} \\ {6} & {-7} & {}\end{bmatrix}=\begin{bmatrix}-3\times4{} & {}-4\times4 & {} \\ {-3}\times4 & -5\times4 & {} \\ {4\times6} & {-7}\times4 & {}\end{bmatrix}\text{.}[/tex]Simplifying the above matrix we get:
[tex]4A=\begin{bmatrix}-12{} & {}-16 & {} \\ {-12} & -20 & {} \\ {24} & {-28} & {}\end{bmatrix}\text{.}[/tex]Answer:
[tex]4A=\begin{bmatrix}-12{} & {}-16 & {} \\ {-12} & -20 & {} \\ {24} & {-28} & {}\end{bmatrix}\text{.}[/tex]