A population is normally distributed with a mean of 100 and a standard deviation of 10. For samples of size 25, what is the probability of randomly sampling and finding a sample mean of 99 or more

Respuesta :

Answer:

The value is  [tex]P( \= X \ge 99) = 0.69146[/tex]

Step-by-step explanation:

From the question we are told that

    The  mean is  [tex]\mu = 100[/tex]

     The standard deviation is  [tex]\sigma = 10[/tex]

       The  sample size is  n  =  25

The standard deviation of the sampling distribution is  

        [tex]\sigma_{\= x} = \frac{\sigma}{\sqrt{n} }[/tex]

=>      [tex]\sigma_{\= x} = \frac{10}{\sqrt{25} }[/tex]

=>      [tex]\sigma_{\= x} = \frac{10}{5 }[/tex]

=>      [tex]\sigma_{\= x} = 2[/tex]

Generally the probability of randomly sampling and finding a sample mean of 99 or more is mathematically represented as

        [tex]P( \= X \ge 99) = 1 - P(\= X < 99)[/tex]

Here  

       [tex]P(\= X < 99) = P(\frac{\= X - \mu }{\sigma } < \frac{99 - 100 }{2} )[/tex]

[tex]\frac{X -\mu}{\sigma }  =  Z (The  \ standardized \  value\  of  \ X )[/tex]

=>     [tex]P(\= X < 99) = P(Z < -0.5 )[/tex]

From the z table probability of  (Z <  -0.5  ) is  

     [tex]P(Z < -0.5 ) = 0.30854[/tex]

Generally  

      [tex]P( \= X \ge 99) = 1 - 0.30854[/tex]

=>    [tex]P( \= X \ge 99) = 0.69146[/tex]