Respuesta :

Answer:

x < -( 8-2b) /a  a > 0

Step-by-step explanation:

−ax + 2b > 8

Subtract 2b from each side

−ax + 2b-2b > 8-2b

-ax > 8 -2b

Divide each side by -a, remembering to flip the inequality ( assuming a>0)

-ax/-a < ( 8-2b) /-a

x < -( 8-2b) /a  a > 0

Answer: [tex]x<\frac{-8+2b}{a}[/tex]

                  [tex]a>0[/tex]

Step-by-step explanation:

[tex]-ax+2b>8[/tex]

[tex]\mathrm{Subtract\:}2b\mathrm{\:from\:both\:sides}[/tex]

[tex]-ax>8-2b[/tex]

[tex]\mathrm{Multiply\:both\:sides\:by\:-1\:\left(reverse\:the\:inequality\right)}[/tex]

[tex]\left(-ax\right)\left(-1\right)<8\left(-1\right)-2b\left(-1\right)[/tex]

[tex]ax<-8+2b[/tex]

[tex]\mathrm{Divide\:both\:sides\:by\:}a[/tex]

[tex]\frac{ax}{a}<-\frac{8}{a}+\frac{2b}{a};\quad \:a>0[/tex]

[tex]x<\frac{-8+2b}{a};\quad \:a>0[/tex]