Respuesta :

8)  [tex]\theta[/tex] is -0.896 radians

9) length of arc is 41.91 cm

Solution:

8)

Given that,

[tex]tan\ \theta = \frac{-5}{4}[/tex]

[tex]\theta[/tex] is in quadrant 4

To find: [tex]\theta[/tex]

From given,

[tex]tan\ \theta = \frac{-5}{4}\\\\\theta = tan^{-1} \frac{-5}{4}\\\\\theta = tan^{-1} (-1.25)\\\\\theta = -51.34[/tex]

Thus value of [tex]\theta[/tex] is -51.34 degrees

Convert degrees to radians

[tex]-51.34\ degree = -51.34 \times \frac{ \pi }{180}\ radian\\\\-51.34\ degree = -0.896\ radian[/tex]

Thus [tex]\theta[/tex] is -0.896 radians

9)

From given,

radius = 15.4 cm

[tex]\theta = \frac{13 \pi }{15}[/tex]

The length of arc when angle in radians is:

[tex]arc\ length = r \times \theta\\\\arc\ length = 15.4 \times \frac{ 13 \pi }{15}\\\\arc\ length = 15.4 \times 2.721\\\\arc\ length = 41.91[/tex]

Thus length of arc is 41.91 cm