Answer:
[tex]W = 1.22 \times 10^9 J[/tex]
Explanation:
Initial potential energy of the given spacecraft is given as
[tex]U = -\frac{GM_e m}{r} - \frac{GM_m m}{r}[/tex]
so we have
[tex]U = - \frac{Gm}{r}(M_e + M_m)[/tex]
so we have
[tex]M_e = 5.98 \times 10^{24} kg[/tex]
[tex]M_m = 7.35 \times 10^{22} kg[/tex]
[tex]m = 1160 kg[/tex]
[tex]r = 3.84 \times 10^8 m[/tex]
[tex]U = - \frac{(6.67 \times 10^{-11})(1160)}{3.84 \times 10^8}(5.98 \times 10^{24} + 7.35 \times 10^{22})[/tex]
[tex]U = -1.22 \times 10^9 J[/tex]
now total work done to move it to infinite is given
W = 0 - U
[tex]W = 1.22 \times 10^9 J[/tex]