Respuesta :

Answer:

The height of the pyramid is [tex]27.56\ ft[/tex]

Step-by-step explanation:

we know that

The volume of the pyramid is equal to

[tex]V=\frac{1}{3}BH[/tex]

where

B is the area of the base of the pyramid

H is the height of the pyramid

step 1

Find the area B of the regular hexagonal base

we know that

The perimeter of a regular hexagon is

[tex]P=6b[/tex]

where

b is the length side of the hexagon

we have

[tex]P=84\ ft[/tex]

substitute

[tex]84=6b[/tex]

solve for b

[tex]b=14\ ft[/tex]

Remember that the area of a regular hexagon is the same that the area of six equilateral triangles

Determine the area of the six equilateral triangles, applying the formula of the law of sines

[tex]B=6[\frac{1}{2}b^2sin(60\°)][/tex]

substitute the value of b

[tex]B=6[\frac{1}{2}(14)^2sin(60\°)][/tex]

[tex]B=509.22\ ft^2[/tex]

step 2

Find the height of the pyramid

[tex]V=\frac{1}{3}BH[/tex]

we have

[tex]V=4,677.85\ ft^3[/tex]

[tex]B=509.22\ ft^2[/tex]

substitute

[tex]4,677.85=\frac{1}{3}(509.22)H[/tex]

solve for H

[tex]14,033.55=(509.22)H[/tex]

[tex]H=14,033.55/(509.22)H[/tex]

[tex]H=27.56\ ft[/tex]