Given the equation
y= [tex] \[log_2(x)\] [/tex]
{(1/2,?), (1, ?), (2, ?), (4,?), (8,?), (16, ?)}
Lets start with (1/2, ?)
Ordered pair is (x,y)
In (1/2, ?) , x=1/2 and we need to find out y
y= [tex] \[log_2(x)\] [/tex]
Plug in 1/2 for x, y= [tex] \[log_2(1/2)\] [/tex] = [tex] \frac{log(1/2)}{log2} [/tex] = -1
we do the same for all ordered pairs
(1, ?)
Plug in 1 for x, y= [tex] \[log_2(1)\] [/tex] = [tex] \frac{log(1)}{log2} [/tex] = 0
(2, ?)
Plug in 2 for x, y= [tex] \[log_2(2)\] [/tex] = [tex] \frac{log(2)}{log2} [/tex] = 1
(4, ?)
Plug in 4 for x, y= [tex] \[log_2(1)\] [/tex] = [tex] \frac{log(4)}{log2} [/tex] = 2
(8, ?)
Plug in 8 for x, y= [tex] \[log_2(8)\] [/tex] = [tex] \frac{log(8)}{log2} [/tex] = 3
(16, ?)
Plug in 16 for x, y= [tex] \[log_2(16)\] [/tex] = [tex] \frac{log(16)}{log2} [/tex] = 4
Ordered pairs are
{(1/2,-1), (1, 0), (2, 1), (4,2), (8,3), (16, 4)}