Respuesta :

Since we have a rectangle triangle, then we can find the other side of the triangle using the Pythagorean theorem.
 We have then:
 [tex]L = \sqrt{3^2+4^2} [/tex]
 [tex]L = \sqrt{9+16} [/tex]
 [tex]L = \sqrt{25} [/tex]
 [tex]L = 5[/tex]
 Then the surface area is given by the sum of the areas.
 Triangle of the base and the top:
 [tex]A1 = (1/2) * (4) * (3) A1 = 6[/tex]
 Rectangle 1:
 [tex]A2 = (3) * (10) A2 = 30[/tex]
 Rectangle 2:
 [tex]A3 = (4) * (10) A3 = 40[/tex]
 Rectangle 3:
 [tex]A4 = (5) * (10) A4 = 50[/tex]
 Finally, the surface area is:
 [tex]A = 2A1 + A2 + A3 + A4 [/tex]
 Substituting values:
 [tex]A = 2 * (6) + 30 + 40 + 50 A = 132[/tex]
 Answer:
 
The surface area of a right triangle prism is:
 
B. 132