Since we have a rectangle triangle, then we can find the other side of the triangle using the Pythagorean theorem.
We have then:
[tex]L = \sqrt{3^2+4^2} [/tex]
[tex]L = \sqrt{9+16} [/tex]
[tex]L = \sqrt{25} [/tex]
[tex]L = 5[/tex]
Then the surface area is given by the sum of the areas.
Triangle of the base and the top:
[tex]A1 = (1/2) * (4) * (3)
A1 = 6[/tex]
Rectangle 1:
[tex]A2 = (3) * (10)
A2 = 30[/tex]
Rectangle 2:
[tex]A3 = (4) * (10)
A3 = 40[/tex]
Rectangle 3:
[tex]A4 = (5) * (10)
A4 = 50[/tex]
Finally, the surface area is:
[tex]A = 2A1 + A2 + A3 + A4
[/tex]
Substituting values:
[tex]A = 2 * (6) + 30 + 40 + 50
A = 132[/tex]
Answer:
The surface area of a right triangle prism is:
B. 132