Respuesta :

Given expression: [tex]\frac{((6^{-4})^{-9})}{6^6}[/tex].

First we would apply exponents of exponent rule on the top.

[tex](a^m)^n= a^{m\times n}[/tex]

Therefore,

[tex]((6^{-4})^{-9}) = (6)^{-4\times -9} = (6)^{36}[/tex]

=[tex]\frac{((6^{-4})^{-9})}{6^6} = \frac{6^36}{6^6}[/tex]

Applying quotient rule of exponents.

[tex]\frac{a^m}{a^n} = a^{m-n}[/tex]

[tex]Therefore \ \frac{6^{36}}{6^6} =6^{36-6}[/tex]

= [tex]6^{30}[/tex]

Therefore,  [tex]6^{30}[/tex] is the simplified form of the expression [tex]\frac{((6^{-4})^{-9})}{6^6}.[/tex]

Answer:

Should be 6^30

Step-by-step explanation: