Respuesta :
a. what is the rate of change of the height of the top of the ladder?
Let y be the height
Let x be the base
dx/dt=8 ft/sec, x=6 ft, hypotenuse=10 ft
x²+y²=10²
2x(dx/dt)+2y(dy/dt)=0
solving for dy/dt in terms of x,y and dx/dt:
dy/dt=(-x/y)(dx/dt)
but now x=6 and y=8
dy/dt=(-6/8)(8)=-6 ft/sec
b]b. at what rate is the area of the triangle formed by the ladder, wall, and ground changing then?
Here the rate of change of the area is dA/dt
dA/dt=1/2(x*dy/dt+y*dx/dt)
but
x=6, y=8, dy/dt=-6, dx/dt=8
plugging in our values we get:
dA/dt=1/2(6×(-6)+8(8))
dA/dt=1/2(-36+64)=14 ft²/sec
c. At what rate is the angle between the ladder and the ground changing then?
The relationship that relates the angle with sides x and y of a right angle:
dθ/dt=-1/sinθ1/10dx/dt
sinθ=8/10
dx/dt=8
thus
-10/8×1/10×8
=-1 rad/sec
Let y be the height
Let x be the base
dx/dt=8 ft/sec, x=6 ft, hypotenuse=10 ft
x²+y²=10²
2x(dx/dt)+2y(dy/dt)=0
solving for dy/dt in terms of x,y and dx/dt:
dy/dt=(-x/y)(dx/dt)
but now x=6 and y=8
dy/dt=(-6/8)(8)=-6 ft/sec
b]b. at what rate is the area of the triangle formed by the ladder, wall, and ground changing then?
Here the rate of change of the area is dA/dt
dA/dt=1/2(x*dy/dt+y*dx/dt)
but
x=6, y=8, dy/dt=-6, dx/dt=8
plugging in our values we get:
dA/dt=1/2(6×(-6)+8(8))
dA/dt=1/2(-36+64)=14 ft²/sec
c. At what rate is the angle between the ladder and the ground changing then?
The relationship that relates the angle with sides x and y of a right angle:
dθ/dt=-1/sinθ1/10dx/dt
sinθ=8/10
dx/dt=8
thus
-10/8×1/10×8
=-1 rad/sec
a) [tex]\rm \dfrac{dy}{dt} = -6 ft/sec[/tex]
b) [tex]\rm \dfrac{dA}{dt}= 14ft^2/sec[/tex]
c) [tex]\rm \dfrac{d\theta}{dt}= -1\; rad/sec[/tex]
Step-by-step explanation:
Given :
Ladder height = 10ft
Base is moving away at the rate of 8 ft/sec.
Calculation :
Let y be the height and x be the base.
[tex]\rm \dfrac{dx}{dt}= 8ft /sec[/tex]
x = 6ft
Applying pythagorean theorem
[tex]x^2 +y^2= 10^2[/tex] ------ (1)
Differentiate equation (1) with respect to time t,
[tex]2x\dfrac{dx}{dt}+2y\dfrac{dy}{dt} = 0[/tex]
[tex]\dfrac{dy}{dt}=-\dfrac{x}{y}\dfrac{dx}{dt}[/tex] ----- (2)
a) Now in equatiuon (2) putting the value of x = 6 and y = 8 we get ,
[tex]\dfrac{dy}{dt}=-\dfrac{6}{8}\times 8[/tex]
[tex]\rm \dfrac{dy}{dt}= -6ft/sec[/tex]
b) The rate of change of the area is
[tex]\rm \dfrac{dA}{dt}[/tex]
[tex]\rm \dfrac{dA}{dt}= \dfrac{1}{2}(x \times \dfrac{dy}{dt}+y\times\dfrac{dx }{dt})[/tex] ----- (3)
Now in equation (3) putting the value of
[tex]x = 6 ,\; y=8,\;\dfrac{dx}{dt}=8,\;\dfrac{dy }{dt}=-6[/tex]
we get,
[tex]\rm \dfrac{dA}{dt}=\dfrac{1}{2}(6\times(-6)+8\times8)[/tex]
[tex]\rm \dfrac{dA}{dt}=14ft^2/sec[/tex]
c) Relationship that relates the angle with sides x and y of a right angle,
[tex]\rm \dfrac{d\theta}{dt}=-\dfrac{1}{sin\theta}\times\dfrac{1}{10}\times \dfrac{dx}{dt}[/tex] ------- (4)
Now in equation (4) putting the value of
[tex]\rm sin\theta = \dfrac{8}{10}, \; \dfrac{dx}{dt}=8[/tex]
we get,
[tex]\rm \dfrac{d\theta}{dt}=-\dfrac{10}{8}\times\dfrac{1}{10}\times 8[/tex]
[tex]\rm \dfrac{d\theta}{dt}= -1 \;rad/sec[/tex]
For more information, refer the link given below
https://brainly.com/question/24898810?referrer=searchResults