Respuesta :
[tex]9x^3 + 9x^2y - 4x - 4y[/tex]
[tex] = 9x^2(x + y) -4(x + y)[/tex]
[tex] = (x +y)(9x^2-4)[/tex]
[tex] = (x +y)(3x - 2)(3x + 2)[/tex]
[tex] = 9x^2(x + y) -4(x + y)[/tex]
[tex] = (x +y)(9x^2-4)[/tex]
[tex] = (x +y)(3x - 2)(3x + 2)[/tex]
Answer:
[tex](x+y)(3x+2)(3x-2)[/tex]
Step-by-step explanation:
The given expression is [tex]9x^3+9x^2y-4x-4y[/tex]
Make group as shown below
[tex](9x^3+9x^2y)+(-4x-4y)[/tex]
Factor out GCF from each of the group
[tex]9x^2(x+y)-4(x+y)[/tex]
Now, factored out the common term
[tex](x+y)(9x^2-4)[/tex]
Now, rewrite the expression in perfect square form
[tex](x+y)((3x)^2-2^2)[/tex]
Apply the difference of squares formula: [tex]a^2-b^2=(a+b)(a-b)[/tex]
[tex](x+y)(3x+2)(3x-2)[/tex]
Hence, the factored form of the given expression is
[tex](x+y)(3x+2)(3x-2)[/tex]