Sphere with diameter 1 unit is enclosed in a cube of side 1 unit each. find the unoccupied volume remaining inside the cube.

Respuesta :

The volume of the sphere is given by:
 V1 = (4/3) * (pi) * (r ^ 3)
 Where,
 r: sphere radio
 Substituting values:
 V1 = (4/3) * (3.14) * ((1/2) ^ 3)
 V1 = 0.523 units ^ 3
 The volume of the cube is given by:
 V2 = L ^ 3
 Where,
 L: length of the sides
 Substituting values:
 V2 = 1 ^ 3
 V2 = 1 units ^ 3
 The unoccupied space is:
 V2-V1 = 1-0.523
 V2-V1 = 0.477 units ^ 3
 Answer:
 
The unoccupied volume remaining inside the cube is:
 
0.477 units ^ 3