Respuesta :

Space

Answer:

The diameter of the cone with the given volume and height is equal to 6 inches.

General Formulas and Concepts:
Geometry

Volume of a Cone Formula: [tex]\displaystyle V = \frac{\pi r^2 h}{3}[/tex]

  • r is radius
  • h is height

Diameter of a Circle Formula: [tex]\displaystyle d = 2r[/tex]

  • r is radius

Step-by-step explanation:

Step 1: Define

Identify variables.

[tex]\displaystyle V = 56.52 \ \text{in}^3 \\h = 6 \ \text{in}[/tex]

Step 2: Find Diameter

  1. [Volume of a Cone Formula] Substitute in variables:
    [tex]\displaystyle 56.52 \ \text{in}^3 = \frac{\pi r^2 (6 \ \text{in})}{3}[/tex]
  2. Solve for r:
    [tex]\displaystyle r = 3 \ \text{in}[/tex]
  3. [Diameter of a Circle Formula] Substitute in variables:
    [tex]\displaystyle d = 2(3 \ \text{in})[/tex]
  4. Evaluate:
    [tex]\displaystyle d = 6 \ \text{in}[/tex]

∴ we find the diameter to be 6 inches.

---

Topic: Algebra I/Geometry A

[tex]\huge\underline{\red{A}\blue{n}\pink{s}\purple{w}\orange{e}\green{r} -}[/tex]

heya! ^^

given ,

[tex] Volume \: of \: cube = 56.52 \: inches^{3} \\ \\ Height \: of \: cone = 6 inches \\ [/tex]

now ,

[tex]\bold\purple{Volume \: of \: cube = \frac{1}{3} \pi r^{2} h }\\ \\ \implies 56.52 = \frac{1}{\cancel{3}} \times \frac{22}{7} \times r^{2} \times \cancel{6} \\ \\ \implies r^{2} = \frac{ 56.52 \times 7}{22 \times 2} \\ \\ \implies r^{2} = \frac{395.64}{44} \\ \\ \implies r^{2} = 9\: inches ( approx. ) \\ \\ \implies \bold\pink{r = 3 \: inches}\\ [/tex]

now ,

diameter , D = 2r

[tex]\dashrightarrow D = 2 \times 3 \\ \\ \dashrightarrow \bold\red{D = 6 \:inches} \\ [/tex]

hope helpful :D