Atrey
contestada

Given : KLMN is a trapezoid

KF=1, MF || LK, altitude - h

Area of KLMF = Area of FMN

_____________________________________________

Find : KN

Given KLMN is a trapezoid KF1 MF LK altitude h Area of KLMF Area of FMN Find KN class=

Respuesta :

Proof:

KLMN- trapezoid                     Given
KF=1                                         Given
MF || LK                                    Given
Altitude-h                                  Given
A-KLMF=A-FMN                     Given
KF*h= FN*h/2                          Area of Parallelogram
FN=2, KF=2                             Area of Parallelogram
KN=KF+FN=3                         Part-Whole Postulate

Answer:

The measure of KN is 3 units.

Step-by-step explanation:

Given information: KLMN is a trapezoid , KF=1, MF || LK, altitude - h , Area of KLMF = Area of FMN

It means KLMF is a parallelogram with base KF=1 and height=h.

The area of a parallelogram is

[tex]A=base\times height[/tex]

The area of KLMF is

[tex]A_1=1\times h=h[/tex]

In triangle FMN, base FN and height h.

The area of a triangle is

[tex]A=\frac{1}{2}\times base\times height[/tex]

[tex]A_2=\frac{1}{2}\times FN\times h[/tex]

[tex]A_2=\frac{h}{2}(FN)[/tex]

It is given that  

Area of KLMF = Area of FMN

[tex]h=\frac{h}{2}(FN)[/tex]

[tex]2h=h(FN)[/tex]

[tex]2=FN[/tex]

The length of FN is 2 units.

The length of KN is

[tex]KN=KF+FN=1+2=3[/tex]

Therefore the measure of KN is 3 units.