Respuesta :
[tex](1 - \frac{1}{4})^{2} \\ \\ (\frac{3}{4}) ^2 \\ \\ \frac{3^2}{4^2} \\ \\ \frac{9}{4^2} \\ \\ \frac{9}{16} \\ \\ Answer: \fbox {9/16} \ or \ \fbox {0.5625}[/tex]
This is another way that you could solve the
problem. :)
[tex](1 -\frac{1}{4})^2\\\\(a-b)^2 = a^2-2ab+b^2\\\\(1-\frac{1}{4})^2 = 1^2 - 2(1)(\frac{1}{4})+ (\frac{1}{4})^2 \\\\ = 1 - \frac{1}{2} +\frac{1}{16}\\\\=1 - \frac{8}{16} + \frac{1}{16} = 1 - \frac{7}{16} = \frac{16}{16} - \frac{7}{16}\\\\=\frac{9}{16}[/tex]
[tex](1 -\frac{1}{4})^2\\\\(a-b)^2 = a^2-2ab+b^2\\\\(1-\frac{1}{4})^2 = 1^2 - 2(1)(\frac{1}{4})+ (\frac{1}{4})^2 \\\\ = 1 - \frac{1}{2} +\frac{1}{16}\\\\=1 - \frac{8}{16} + \frac{1}{16} = 1 - \frac{7}{16} = \frac{16}{16} - \frac{7}{16}\\\\=\frac{9}{16}[/tex]