We are tasked to solved for the centripetal acceleration given the radius and the tangetial velocity. USing the formula of Centripetal acceleration,
[tex] a_{c} [/tex] = [tex] \frac{ v_{t} ^{2} }{r} [/tex]
Given:
[tex] v_{t} [/tex] = 7.85 m/s
r= 20.0 m
By Substitution,
[tex] a_{c} [/tex] = [tex] \frac{ v_{t} ^{2} }{r} [/tex]
[tex] a_{c} [/tex] = [tex] \frac{ 7.85^{2} }{20} [/tex]
[tex] a_{c} [/tex] = [tex] \frac{ 61.6225}{20} [/tex]
[tex] a_{c} [/tex] = 3.081125 m/[tex] s^{2} [/tex]
Therefore, the centripetal acceleration is 3.08 m/[tex] s^{2} [/tex]