contestada

What are the coordinates of the centroid of a triangle with vertices P(−4, −1) , Q(2, 2) , and R(2, −3) ?

Respuesta :

the centroid is: x=0, y = -2/3

Answer:

[tex](x,y)=(0,\frac{-2}{3})[/tex]

Step-by-step explanation:

Given : Vertices of Triangle [tex]P(x_1,y_1)=(-4,-1)[/tex] , [tex]Q(x_2,y_2)=(2, 2)[/tex] and [tex]R(x_3,y_3)=(2,-3)[/tex]

To find : Centroid of a triangle

The centroid of a triangle is the point of intersection of the three medians of the triangle.

The formula to calculate the centroid of a triangle is:

[tex](x,y)=(\frac{x_1+x_2+x_3}{3},\frac{y_1+y_2+y_3}{3})[/tex]

Where, [tex]x_1,x_2,x_3,y_1,y_2,y_3[/tex]  are the coordinates of the centroid

Substituting the values in the formula gives us:

[tex](x,y)=(\frac{x_1+x_2+x_3}{3},\frac{y_1+y_2+y_3}{3})[/tex]

[tex](x,y)=(\frac{-4+2+2}{3},\frac{-1+2-3}{3})[/tex]

[tex](x,y)=(\frac{0}{3},\frac{-2}{3})[/tex]

Therefore, [tex](x,y)=(0,\frac{-2}{3})[/tex]