(9.) In a geometric sequence, it is known that a1= -1 and a4= 64. The value of a10 is...

Answer:
[tex]a_{10} =262,144[/tex].
Step-by-step explanation:
Given :
In a geometric sequence , [tex]a_{1} = -1\\a_{4} =64[/tex]
To Find : Value of [tex]a_{10}[/tex]
Solution :
Formula of finding nth term in geometric sequence :
[tex]a_{n} =a_{1} *r^{n-1}[/tex]
Now to find values of r (common ratio)
[tex]a_{4} =a_{1} *r^{4-1}[/tex]
[tex]64 = -1*r^{3}[/tex]
[tex]\sqrt[3]{-64} =r[/tex]
[tex]-4 = r[/tex]
Now Find the value of [tex]a_{10}[/tex] using formula given above :
[tex]a_{10} =a_{1} *r^{10-1}[/tex]
[tex]a_{10} = -1 *(-4)^{9}[/tex]
[tex]a_{10} = -1 *-262,144[/tex]
[tex]a_{10} =262,144[/tex]
Hence The value of [tex]a_{10} =262,144[/tex].