Respuesta :

Recall that

[tex]\det(\mathbf{AB})=\det\mathbf A\det\mathbf B[/tex]

[tex]\det\mathbf A=\det\mathbf A^\top[/tex]

for any square matrices [tex]\mathbf A,\mathbf B[/tex]. So if

[tex]\mathbf U^\top\mathbf U=\mathbf I[/tex], and [tex]\det\mathbf I=1[/tex], we have

[tex]\det(\mathbf U^\top\mathbf U)=(\det\mathbf U)^2=1\implies\det\mathbf U=\pm1[/tex]