Respuesta :
Plug -5 into both of them and divide:
[tex]\sf\dfrac{2x-20}{x-1}[/tex]
[tex]\sf\dfrac{2(-5)-20}{-5-1}[/tex]
Simplify:
[tex]\sf\dfrac{-10-20}{-6}[/tex]
[tex]\sf\dfrac{-30}{-6}[/tex]
[tex]\boxed{\sf 5}[/tex]
[tex]\sf\dfrac{2x-20}{x-1}[/tex]
[tex]\sf\dfrac{2(-5)-20}{-5-1}[/tex]
Simplify:
[tex]\sf\dfrac{-10-20}{-6}[/tex]
[tex]\sf\dfrac{-30}{-6}[/tex]
[tex]\boxed{\sf 5}[/tex]
Answer:
Option b is correct.
[tex](\frac{f}{g})(-5)[/tex] = 5
Step-by-step explanation:
Given the functions:
[tex]f(x)=2x-20[/tex]
[tex]g(x)=x-1[/tex]
Solve: [tex](\frac{f}{g})(-5)[/tex]
[tex](\frac{f}{g})(x) = \frac{f(x)}{g(x)}[/tex]
Substitute the given function we have;
[tex](\frac{f}{g})(x) = \frac{2x-20}{x-1}[/tex]
Put x = -5 we have;
[tex](\frac{f}{g})(-5) = \frac{2(-5)-20}{-5-1} =\frac{-10-20}{-6}=\frac{-30}{-6} = 5[/tex]
therefore, the value of [tex](\frac{f}{g})(-5)[/tex] is 5.