Respuesta :

Unfold it and add 4.
  -3 < x-4 < 3
  1 < x < 7

Answer:

The solution of the given inequality  [tex]|x-4|<\:3\:[/tex] is [tex]1<x<7[/tex]

Step-by-step explanation:

Given inequality [tex]|x-4|<\:3\:[/tex]

We have to find the solution of the given inequality  [tex]|x-4|<\:3\:[/tex]

Using absolute rule, [tex]\mathrm{If}\:|u|\:<\:a,\:a>0\:\mathrm{then}\:-a\:<\:u\:<\:a[/tex], we have,

[tex]-3<x-4<3[/tex]

Rewrite as [tex]x-4<-3\quad \mathrm{and}\quad \:x-4<3[/tex]

Consider , [tex]x-4>-3[/tex]

Adding 4 both side, we have,

[tex]x-4+4>-3+4[/tex]

Simplify, we have,

[tex]x>1[/tex]

Consider , [tex]x-4<3[/tex]

Adding 4 both side, we have,

[tex]x-4+4<3+4[/tex]

Simplify, we have,

[tex]x<7[/tex]

Combining, we have,

[tex]1<x<7[/tex]

Thus, The solution of the given inequality  [tex]|x-4|<\:3\:[/tex] is [tex]1<x<7[/tex]