Answer:
[tex]p^2\sqrt[4]{27pq^3}[/tex]
Step-by-step explanation:
[tex](3p^3q)^\frac{3}{4}[/tex]
To get radical form , remove the fractional exponent
[tex](a^m)^n=a^{mn}[/tex]
multiply the exponent 3/4 inside the parenthesis
[tex]3^\frac{3}{4} p^{3 \cdot \frac{3}{4}} q^\frac{3}{4}[/tex]
[tex]3^\frac{3}{4} p^{\frac{9}{4}} q^\frac{3}{4}[/tex]
[tex]\sqrt[4]{27} \cdot p^2\sqrt[4]{p} \cdot \sqrt[4]{q^3}[/tex]
[tex]p^2\sqrt[4]{27pq^3}[/tex]