Answer:
$1215.69
Step-by-step explanation:
Given the formula for the value of a machine [tex]\sf V[/tex] at the end of [tex]\sf t[/tex] years:
[tex]\Large\boxed{\boxed{\sf V = C(1 - r)^t }}[/tex]
Where:
We are given that [tex]\sf C = \$2968[/tex], [tex]\sf r = 0.2[/tex], and [tex]\sf t = 4[/tex].
We need to find the value of the machine at the end of 4 years.
Substituting the given values into the formula:
[tex]\sf V = 2968(1 - 0.2)^4 [/tex]
[tex]\sf V = 2968(0.8)^4 [/tex]
[tex]\sf V = 2968 \times 0.4096 [/tex]
[tex]\sf V = 1215.6928 [/tex]
[tex]\sf V = 1215.69 \textsf{(in nearest cent)}[/tex]
So, the value of the machine at the end of 4 years is approximately $1215.69.