Respuesta :
Answer: The required solution in interval notation is [tex](0,\infty)U(-\infty,-5].[/tex]
Step-by-step explanation: We are given to find the solution to the following compound inequality in interval notation :
[tex]2(x+3)>6~or~2x+3\leq -7~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex]
To find the solution to (i), we must solve both the parts separately.
The inequality (i) can be solved as follows :
[tex]2(x+3)>6\\\\\Rightarrow x+3>\dfrac{6}{2}\\\\\Rightarrow x+3>3\\\\\Rightarrow x>3-3\\\\\Rightarrow x>0\\\\\Rightarrow x\epsilon (0,\infty)[/tex]
or
[tex]2x+3\leq-7\\\\\Rightarrow 2x\leq-7-3\\\\\Rightarrow 2x\leq -10\\\\\Rightarrow x\leq -\dfrac{10}{2}\\\\\Rightarrow x\leq-5\\\\\Rightarrow x\epsilon(-\infty,-5].[/tex]
Thus, the required solution in interval notation is [tex](0,\infty)U(-\infty,-5].[/tex]