Answer:
x = 2.16
Step-by-step explanation:
To solve the equation [tex]4^x = 20[/tex] using logarithms, we'll take the logarithm of both sides. Specifically, we'll use the natural logarithm (ln) to maintain consistency.
We have:
[tex]4^x = 20[/tex]
Taking the natural logarithm of both sides:
[tex] \ln(4^x) = \ln(20) [/tex]
Using the property of logarithms that [tex] \ln(a^b) = b \cdot \ln(a) [/tex], we get:
[tex] x \cdot \ln(4) = \ln(20) [/tex]
Now, to isolate [tex]x[/tex], we divide both sides by [tex]\ln(4)[/tex]:
[tex] x = \dfrac{\ln(20)}{\ln(4)} [/tex]
Using a calculator:
[tex] x \approx \dfrac{2.995732274}{1.386294361} \approx 2.160964047 [/tex]
[tex] x \approx 2.16 \textsf{(in nearest hundredth)}[/tex]
Therefore, the value of x is 2.16.