Find the area of the composite figure.
First, find the area of the parallelogram.
Parallelogram
Area = [?] cm²
Rectangle
Area = [ ] cm²
7 cm
14 cm
7 cm
21 cm
Total Area of
Composite Figure = [ ] cm²

Find the area of the composite figure First find the area of the parallelogram Parallelogram Area cm Rectangle Area cm 7 cm 14 cm 7 cm 21 cm Total Area of Compo class=

Respuesta :

Answer :

  • area llgm = 98 cm^2
  • area rec. = 147 cm^2
  • area total = 245 cm^2

Explanation:

area of llgm is given by,

  • area(p) = base x height
  • area(p) = 7cm x 14cm
  • area(p) = 98 cm^2

area of rectangle is given by,

  • area(r) = width x height
  • area(r) = 21 cm x 7 cm
  • area(r) = 147 cm^2

total area is given by,

  • area(t) = area(p) + area(r)
  • area(t) = 98cm^2 + 147cm^2
  • area(t) = 245 cm^2
msm555

Answer:

[tex] A_{\textsf{parallelogram}} = 98 \, \textsf{cm}^2 [/tex]

[tex] A_{\textsf{rectangle}} = 147 \, \textsf{cm}^2 [/tex]

[tex] \textsf{Total Area} = 245 \, \textsf{cm}^2 [/tex]

Step-by-step explanation:

To find the area of the composite figure, we first need to find the area of each individual component and then sum them up.

Area of the Parallelogram:

Given:

  • Base of the parallelogram [tex]= 7 \, \textsf{cm}[/tex]
  • Height of the parallelogram [tex]= 14 \, \textsf{cm}[/tex]

The area [tex]A[/tex] of a parallelogram is given by the formula:

[tex] A_{\textsf{parallelogram}} = \textsf{Base} \times \textsf{Height} [/tex]

[tex] A_{\textsf{parallelogram}} = 7 \times 14 [/tex]

[tex] A_{\textsf{parallelogram}} = 98 \, \textsf{cm}^2 [/tex]

Area of the Rectangle:

Given:

  • Length of the rectangle [tex]= 21 \, \textsf{cm}[/tex]
  • Width of the rectangle [tex]= 7 \, \textsf{cm}[/tex]

The area [tex]A[/tex] of a rectangle is given by the formula:

[tex] A_{\textsf{rectangle}} = \textsf{Length} \times \textsf{Width} [/tex]

[tex] A_{\textsf{rectangle}} = 21 \times 7 [/tex]

[tex] A_{\textsf{rectangle}} = 147 \, \textsf{cm}^2 [/tex]

Now, to find the total area of the composite figure, we add the areas of the parallelogram and the rectangle:

[tex] \textsf{Total Area} = A_{\textsf{parallelogram}} + A_{\textsf{rectangle}} [/tex]

[tex] \textsf{Total Area} = 98 + 147 [/tex]

[tex] \textsf{Total Area} = 245 \, \textsf{cm}^2 [/tex]

So, the total area of the composite figure is [tex]245 \, \textsf{cm}^2[/tex].