Respuesta :

Answer: [tex]y=48[/tex]

Explanation:

The resultant vector is the sum of two or more vectors, taking into account both their magnitudes and directions.

Let's use the information given to solve for the y-component:

Magnitude : [tex]60m[/tex]

x-component : [tex]36m[/tex]

Resultant Vector:

[tex]r=\sqrt{x^2+y^2}[/tex]

[tex]60 = \sqrt{36^2+y^2}[/tex]

[tex]3600 = 36^2+y^2[/tex]

[tex]3600-36^2=y^2[/tex]

[tex]y^2=2304[/tex]

[tex]y=48[/tex]

That's it!

msm555

Answer:

48m

Explanation:

We can use the formula for the magnitude of a vector in two dimensions to find the y-component.

The magnitude of a vector [tex] \mathsf{v} [/tex] in two dimensions, denoted as [tex] |\mathsf{v}| [/tex], is given by:

[tex] \Large\boxed{\boxed{|\mathsf{v}| = \sqrt{v_x^2 + v_y^2} }}[/tex]

where

  • [tex] v_x [/tex] is the x-component and
  • [tex] v_y [/tex] is the y-component of the vector.

Given:

  • Magnitude of the vector [tex] |\mathsf{v}| = 60 [/tex] m
  • x-component: [tex] v_x = 36 [/tex] m

We need to find [tex] v_y [/tex].

Using the formula for magnitude, we have:

[tex] 60 = \sqrt{(36)^2 + v_y^2} [/tex]

[tex] 60^2 = 36^2 + v_y^2 [/tex]

[tex] 3600 = 1296 + v_y^2 [/tex]

[tex] v_y^2 = 3600 - 1296 [/tex]

[tex] v_y^2 = 2304 [/tex]

[tex] v_y = \sqrt{2304} [/tex]

[tex] v_y = 48 [/tex]

So, the value of its y-component is:

[tex] \Large\boxed{\boxed{48 \sf \, m}}[/tex]