Which equation has no solution?
a) 2x - 6x = 4(1 - x) - 4
b) 6x - 2x = 4(1 - x) - 4
c) 2x - 6x = 4(1 - x)
d) 6x - 2x = 4(1 - x)

Respuesta :

Answer: C

Step-by-step explanation:

In order to have no solution, we will not have "x=" as an answer. All we have to do is to solve for x in each option.

Option A: Incorrect

[tex]2x-6x=4(1-x)-4[/tex]                   [combine like terms]

[tex]-4x=4-4x-4[/tex]                            [combine like terms]

[tex]-4x=-4x[/tex]                                    

Even if we didn't solve for x, notice that both sides of the equation is the same. That means that there will be infinite solutions. Therefore, this option is incorrect.

----------------------------------------------------------------------------------------------------------

Option B: Incorrect

[tex]6x-2x=4(1-x)-4[/tex]                   [combine like terms]

[tex]4x=4(1-x)-4[/tex]                            [distribute]

[tex]4x=4-4x-4[/tex]                              [combine like terms]

[tex]4x=-4x[/tex]                                        [add both sides by 4x]

[tex]8x=0[/tex]                                             [divide both sides by 8]

[tex]x=0[/tex]

Notice that we got an actual value for x. Therefore, this option is incorrect.

----------------------------------------------------------------------------------------------------------

Option C: Correct

[tex]2x-6x=4(1-x)[/tex]                         [combine like terms]

[tex]-4x=4(1-x)[/tex]                               [distribute]

[tex]-4x=4-4x[/tex]                                 [add both sides by 4x]

[tex]0=4[/tex]

Notice that x is gone all together. With what we have left, 0=4 is not true. Therefore, this option is correct with having no solutions.

----------------------------------------------------------------------------------------------------------

Option D: Incorrect

[tex]6x-2x=4(1-x)[/tex]                         [combine like terms]

[tex]4x=4(1-x)[/tex]                                 [distribute]

[tex]4x=4-4x[/tex]                                    [add both sides by 4x]

[tex]8x=4[/tex]                                            [divide both sides by 8]

[tex]x=\frac{4}{8}[/tex]                                             [simplify]

[tex]x=\frac{1}{2}[/tex]

Notice that we got an actual value for x. Therefore, this option is incorrect.