Respuesta :

In spherical coordinates, we have

[tex]\begin{cases}x=\rho\cos\theta\sin\varphi\\y=\rho\sin\theta\sin\varphi\\z=\rho\cos\varphi\end{cases}[/tex]

which gives volume element

[tex]\mathrm dV=\mathrm dx\,\mathrm dy\,\mathrm dz=\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\varphi\,\mathrm d\theta[/tex]

and so the triple integral is given by

[tex]\displaystyle\iiint_H(9-x^2-y^2)\,\mathrm dV[/tex]
[tex]=\displaystyle\int_{\theta=0}^{\theta=2\pi}\int_{\varphi=0}^{\varphi=\pi/2}\int_{\rho=0}^{\rho=2}(9-\rho^2\sin^2\varphi)\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\varphi\,\mathrm d\theta[/tex]
[tex]=\displaystyle2\pi\int_{\varphi=0}^{\varphi=\pi/2}\int_{\rho=0}^{\rho=2}(9\rho^2\sin\varphi-\rho^4\sin^3\varphi)\,\mathrm d\rho\,\mathrm d\varphi[/tex]
[tex]=\dfrac{592\pi}{15}[/tex]