Respuesta :
Replace f(x)fx with yy.y=6x3−8y=6x3-8Interchange the variables.x=6y3−8x=6y3-8Solve for yy.
y=3√36(x+8)6y=36x+836Solve for yy and replace with f−1(x)f-1x.
f−1(x)=3√36(x+8)6
y=3√36(x+8)6y=36x+836Solve for yy and replace with f−1(x)f-1x.
f−1(x)=3√36(x+8)6
Answer:
[tex] f^{-1}(x) = \sqrt[3]{\frac{x+8}{6}}[/tex]
Step-by-step explanation:
Given function,
[tex]f(x)=6x^3-8[/tex]
Replace f(x) by y,
[tex]y=6x^3-8[/tex]
Switch x and y,
[tex]x=6y^3-8[/tex]
Isolate y in the left side,
[tex]-6y^3=-x-8[/tex]
[tex]6y^3=x+8[/tex]
[tex]y^3=\frac{x+8}{6}[/tex]
[tex]y=\sqrt[3]{\frac{x+8}{6}}[/tex]
Replace y by [tex]f^{-1}(x)[/tex]
[tex]\implies f^{-1}(x) = \sqrt[3]{\frac{x+8}{6}}[/tex]
Which is the required inverse of the given function.