The impulse given to a ball with mass of 2.0 kg is 16 N*s. If the ball were already moving at 3.0 m/s., what would the final velocity be? (Remember that v = Vfinal - Vinitial ) 5 m/s 11 m/s 29 m/s 35 m/s

Respuesta :

Answer:

11 m/s

Explanation:

The impulse given to the ball is equal to its change in momentum:

[tex]I=\Delta p=m \Delta v= m(v_f -v_i)[/tex]

where

m=2.0 kg is the mass of the ball

[tex]v_i=3.0 m/s[/tex] is the initial velocity of the ball

[tex]v_f[/tex] is the final velocity of the ball

[tex]I=16 Ns[/tex] is the impulse

If we re-arrange the formula and we replace the numbers, we can find the final velocity:

[tex]v_f = \frac{I}{m}+v_i=\frac{16 Ns}{2.0 kg}+3.0 m/s=11 m/s[/tex]

The correct answer to the question is 11 m/s.

CALCULATION:

The mass of the ball is given as m =  2.0 kg.

The impulse exerted on the ball is 16 N-s.

The initial velocity of the ball u = 3 m/s.

We are asked to calculate the final velocity v.

The impulse of a ball is defined as the product of force with time. On the other hand, it can be defined as the change in momentum of a body.

Mathematically it can be written as -

                            Impulse = mv - mu = dp.

Here, p stands for the momentum.

From above we see that impulse = 16 N-s.

                                        ⇒ mv - mu = 16 N-s

                                        ⇒ m(v-u) = 16 N-s

                                        ⇒ v - u = [tex]\frac{16}{m}[/tex]

                                                     = [tex]\frac{16}{2}\ m/s[/tex]

                                                     = 8 m/s

                                         ⇒ v = u + 8 m/s

                                                = 3.0 m/s + 8.0 m/s

                                                = 11 m/s          [ans]