Respuesta :

we have

[tex]y=x^{2}-10x[/tex]

Completing the square

[tex]y+5^{2}=x^{2}-10x+5^{2}[/tex]

[tex]y+25=x^{2}-10x+25[/tex]

[tex]y+25=(x-5)^{2}[/tex]

Swap  x and y

[tex]x+25=(y-5)^{2}[/tex]

Solve for y

[tex](y-5)^{2}=x+25[/tex]

Square root both sides

[tex](y-5)=(+/-)\sqrt{x+25}[/tex]

[tex]y=(+/-)\sqrt{x+25}+5[/tex]

Let

[tex]f(x)^{-1} =y[/tex]

[tex]f(x)^{-1}=(+/-)\sqrt{x+25}+5[/tex]

therefore

the answer is

The inverse is equal to

[tex]f(x)^{-1}=(+/-)\sqrt{x+25}+5[/tex]

The inverse of a function, is its opposite.

The inverse function is: [tex]\mathbf{f^{-1}(x) = 5 \pm \sqrt{x+25} }[/tex]

The function is given as:

[tex]\mathbf{y = x^2 - 10x}[/tex]

Swap y and x

[tex]\mathbf{x = y^2 - 10y}[/tex]

Complete the square on the above equation

[tex]\mathbf{x+ (-\frac{10}{2})^2 = y^2 - 10y + (-\frac{10}{2})^2}[/tex]

[tex]\mathbf{x+25 = y^2 - 10y + 25}[/tex]

Express the right-hand side as a perfect square

[tex]\mathbf{x+25 = (y - 5)^2}[/tex]

Take square roots of both sides

[tex]\mathbf{\pm \sqrt{x+25} = y - 5}[/tex]

Add 5 to both sides

[tex]\mathbf{5 \pm \sqrt{x+25} = y }[/tex]

Rewrite as:

[tex]\mathbf{y = 5 \pm \sqrt{x+25} }[/tex]

So, we have:

[tex]\mathbf{f^{-1}(x) = 5 \pm \sqrt{x+25} }[/tex]

Hence, the inverse function is: [tex]\mathbf{f^{-1}(x) = 5 \pm \sqrt{x+25} }[/tex]

Read more about inverse functions at:

https://brainly.com/question/10300045