The sum of a number and its square is 42. Which equation can be used to find the two numbers for which this is true?

x2 + x = 42
x2 + 2x = 42
x2 + x + 42 = 0
x2 + 2x + 42 = 0

Respuesta :

gmany

The sum: "+"

a number: "x"

a square of a number: "x²"


Answer: x + x² = 42 → x² + x = 42

Answer:

[tex]x^{2}+x =42[/tex]

Step-by-step explanation:

Let

x------> the number

we know that

The algebraic expression that represent the situation is equal to

[tex]x^{2}+x =42[/tex] ----> quadratic equation

using a graphing tool-----> to resolve the quadratic equation

see the attached figure

The solutions are

[tex]x=-7, x=6[/tex]

Verify each solution

For [tex]x=-7[/tex]

substitute in the expression

[tex]x^{2}+x =42[/tex]

[tex](-7)^{2}+(-7) =42[/tex]

[tex]49-7=42[/tex]

[tex]42=42[/tex] -----> is true

For [tex]x=6[/tex]

substitute in the expression

[tex]x^{2}+x =42[/tex]

[tex](6)^{2}+(6) =42[/tex]

[tex]36+6=42[/tex]

[tex]42=42[/tex] -----> is true

Ver imagen calculista