Respuesta :

 If [tex]f(x) = x2 + 1[/tex] and[tex]g(x) = x - 4[/tex] then

(f∘g)(10)= 

Answer:

Option a is correct

(f∘g)(10)=37

Step-by-step explanation:

Given the functions:

[tex]f(x) = x^2 + 1[/tex]

[tex]g(x) =x-4[/tex]

We have to find (f∘q)(10).

At x = 10

g(10) = 10-4 = 6

then;

[tex](f o g)(10) = f(g(10))[/tex]

Substitute the value of g(10) we have;

[tex](f o g)(10) = f(6)[/tex]

Substitute the value of x = 6 in f(x) we have;

[tex](f o g)(10) =6^2+1[/tex]

⇒[tex](f o g)(10) =36+1=37[/tex]

Therefore, the value of (f∘g)(10) is, 37