Respuesta :

This is the concept of probability and statistics;
The question requires us to get the conditional probability is given by:
P(A|B)=(P(A∩B))/P(B)
but;
P(A∩B)=3/10
P(B)=4/5
thus;
P(A|B)=(3/10)/(4/5)=3/8
The answer is 3/8

Answer:

[tex]\frac{3}{8}[/tex]

Step-by-step explanation:

Since, the general equation of conditional probability is,

[tex]P(\frac{A}{B})=\frac{P(A\cap B)}{P(B)}[/tex]

We have,

[tex]P(A\cap B)=\frac{3}{10}[/tex]

[tex]P(B)=\frac{4}{5}[/tex]

By substituting the values,

[tex]P(\frac{A}{B})=\frac{\frac{3}{10}}{\frac{4}{5}}[/tex]

[tex]=\frac{5\times 3}{10\times 4}[/tex]

[tex]=\frac{15}{40}[/tex]

[tex]=\frac{3}{8}[/tex]

Hence, the value of P(A∩B) is 3/8.