Respuesta :
using sin rule:
a/sin A =b/sin B=c/sin c
SIN A=sin 46=0.72
THEN:sin B =(0.72*26)/33=0.57
then B= 34°
AS the sum of triangle angles=180
then C=180-(46+34)=100°
then c =(a*sin C)/sin A
sin C=sin 100=0.98
=(33*0.98)*0.72=45
a/sin A =b/sin B=c/sin c
SIN A=sin 46=0.72
THEN:sin B =(0.72*26)/33=0.57
then B= 34°
AS the sum of triangle angles=180
then C=180-(46+34)=100°
then c =(a*sin C)/sin A
sin C=sin 100=0.98
=(33*0.98)*0.72=45
Answer:
[tex]B=34.5\degree[/tex]
[tex]C=99.5\degree[/tex]
[tex]c=45.2[/tex]
Step-by-step explanation:
We use the sine rule to obtain;
[tex]\frac{\sin(B)}{b}=\frac{\sin(A)}{a}[/tex]
We substitute the values to obtain;
[tex]\frac{\sin(B)}{26}=\frac{\sin(46\degree)}{33}[/tex]
We multiply through by 26 to obtain;
[tex]\sin(B)=\frac{\sin(46\degree)}{33}\times 26[/tex]
[tex]\sin(B)=0.5668[/tex]
[tex]B=\sin^{-1}(0.5668)[/tex]
[tex]B=34.5\degree[/tex]
We now use the sum of angles in a triangle to obtain;
[tex]C+34.5\degree+46\degree=180\degree[/tex]
[tex]C+80.5\degree=180\degree[/tex]
[tex]C=180\degree-80.5\degree[/tex]
[tex]C=99.5\degree[/tex]
We use the sine rule again to get;
[tex]\frac{c}{\sin(99.5\degree)}=\frac{33}{\sin(46\degree)}[/tex]
[tex]c=\frac{33}{\sin(46\degree)}\times \sin(99.5\degree)[/tex]
[tex]c=45.2[/tex]