It takes 4 hr 39 min for a 2.00-mg sample of radium-230 to decay to 0.25 mg. What is the half-life of radium-230? A) 1 hr 4 min B) 1 hr 17 min C) 1 hr 33 min D) 1 hr 49 min Eli

Respuesta :

the half-life of radium-230 is 1 hr 33 min.

Answer : The half-life of radium-230 is, 1 hr 33 min

Solution : Given,

Initial amount of radium-230 = 2.00 mg

Amount left after time, 't' = 0.25 mg

Time = 4 hr 39 min = [tex]4\times 60+39=279min[/tex]      (1 hr = 60 min)

Rate law expression for first order kinetics :

[tex]N=N_o\times e^{-\lambda t}[/tex]

Taking 'ln' on both the sides, we get

[tex]\ln(\frac{N}{N_o})=-\lambda t[/tex]

where,

N = amount left after time t

[tex]N_0[/tex] = initial amount

[tex]\lambda[/tex] = rate constant

t = time

Now put all the given values in the above expression, we get

[tex]\ln(\frac{0.25}{2})=-\lambda \times (279min)[/tex]

By rearranging the terms, we get

[tex]\lambda=0.00745min^{-1}[/tex]

Radioactive decay follows first order kinetics.

[tex]t_{\frac{1}{2}}=\frac{0.693}{\lambda}[/tex]

[tex]t_{\frac{1}{2}}=\frac{0.693}{0.00745min^{-1}}=93.020min=1hr33min[/tex]

Therefore, the half-life of radium-230 is, 1 hr 33 min