Respuesta :

the answer is x=7/3 hope this helps 

Answer:

The solution for the given expression [tex]\log _{3x-2}\left(125\right)=3[/tex] is [tex]\frac{7}{3}[/tex]

Step-by-step explanation:

Given : Expression [tex]\log _{3x-2}\left(125\right)=3[/tex]

We have to find the solution for the given expression [tex]\log _{3x-2}\left(125\right)=3[/tex]

Consider the given expression [tex]\log _{3x-2}\left(125\right)=3[/tex]

Apply log rule, [tex]\log _a\left(b\right)=\frac{\ln \left(b\right)}{\ln \left(a\right)}[/tex]

[tex]\log _{3x-2}\left(125\right)=\frac{\ln \left(125\right)}{\ln \left(3x-2\right)}[/tex]

[tex]\frac{\ln \left(125\right)}{\ln \left(3x-2\right)}=3[/tex]

Multiply both side by [tex]\ln \left(3x-2\right)[/tex]

We get, [tex]\frac{\ln \left(125\right)}{\ln \left(3x-2\right)}\ln \left(3x-2\right)=3\ln \left(3x-2\right)[/tex]

Simplify , we have,

[tex]\ln \left(125\right)=3\ln \left(3x-2\right)[/tex]

Divide both sie by 3, we get,

[tex]\frac{3\ln \left(3x-2\right)}{3}=\frac{\ln \left(125\right)}{3}[/tex]

Also, [tex]\frac{\ln \left(125\right)}{3}=\frac{\ln \left(5^3\right)}{3}=\frac{3\ln \left(5\right)}{3}=\ln(5)[/tex]

Thus, [tex]\ln \left(3x-2\right)=\ln \left(5\right)[/tex]

When logs have same base, we have,

[tex]\log _b\left(f\left(x\right)\right)=\log _b\left(g\left(x\right)\right)\quad \Rightarrow \quad f\left(x\right)=g\left(x\right)[/tex]

Thus, [tex]3x - 2 = 5[/tex]

Add 2 both sides, we have,

[tex]3x = 7[/tex]

Divide both side by 3, we have,

[tex]x=\frac{7}{3}[/tex]

Thus, the solution for the given expression [tex]\log _{3x-2}\left(125\right)=3[/tex] is [tex]\frac{7}{3}[/tex]