Respuesta :
[tex]\bf \textit{symmetry identity}\qquad sin(-\theta)\iff -sin(\theta)\\\\
-----------------------------\\\\
sin(-\theta)=\cfrac{1}{5}\implies -sin(\theta)=\cfrac{1}{5}\implies sin(\theta)=-\cfrac{1}{5}
\\\\\\
tan(\theta)=\cfrac{\sqrt{6}}{12}\\\\
-----------------------------\\\\
tan(\theta)=\cfrac{sin(\theta)}{cos(\theta)}\implies cos(\theta)=\cfrac{sin(\theta)}{tan(\theta)}\implies cos(\theta)=\cfrac{-\frac{1}{5}}{\frac{\sqrt{6}}{12}}[/tex]
simplify away
simplify away
hello :
tan(θ)= Sin(θ)/cos(θ)
cos(θ) =Sin(θ)/tan(θ)
Sin(−θ)= - Sin(θ)
Sin(θ) = -1/5
cos(θ) =(1/5)/√6/12
tan(θ)= Sin(θ)/cos(θ)
cos(θ) =Sin(θ)/tan(θ)
Sin(−θ)= - Sin(θ)
Sin(θ) = -1/5
cos(θ) =(1/5)/√6/12