Respuesta :
1. [tex]y=\ln(\sinh2x)\implies y'=\dfrac{(\sinh2x)'}{\sinh2x}[/tex]
Recall that [tex](\sinh x)'=\cosh x[/tex], which follows from the definition of the hyperbolic functions:
[tex](\sinh x)'=\left(\dfrac{e^x-e^{-x}}2\right)'=\dfrac{e^x+e^{-x}}2=\cosh x[/tex]
so by the chain rule, the derivative reduces to
[tex]y'=\dfrac{2\cosh2x}{\sinh2x}=2\coth2x[/tex]
2. [tex]\sinh3y=\cos2x\implies(\sinh3y)'=(\cos2x)'\implies3\cosh3y\,y'=-2\sin2x[/tex]
The derivative on the left side follows from the same principle as in the first problem. Solving for [tex]y'[/tex], you get
[tex]y'=-\dfrac{2\sin2x}{3\cosh3y}[/tex]
3. [tex]y=\sin^24x\cos3x[/tex]
Product rule:
[tex]y'=(\sin^24x)'\cos3x+\sin^24x(\cos3x)'[/tex]
then power (for the first derivative) and chain rules:
[tex]y'=2\sin4x(4\cos4x)\cos3x-3\sin^24x\sin3x[/tex]
[tex]y'=8\sin4x\cos4x\cos3x-3\sin^24x\sin3x[/tex]
This can be reduced a bit more, but you can stop here since this is one of the answer choices.
4. [tex]\ln(x+y)=e^{x/y}[/tex]
Chain rule for both sides:
[tex](\ln(x+y))'=\left(e^{x/y}\right)'\implies\dfrac{(x+y)'}{x+y}=\left(\dfrac xy\right)'e^{x/y}[/tex]
[tex]\implies\dfrac{1+y'}{x+y}=\left(\dfrac{y-xy'}y^2\right)e^{x/y}[/tex]
I would stop here, but maybe your answer choices are solutions for [tex]y'[/tex] explicitly. If that's the case, solving [tex]y'[/tex] is a purely algebraic exercise.
Recall that [tex](\sinh x)'=\cosh x[/tex], which follows from the definition of the hyperbolic functions:
[tex](\sinh x)'=\left(\dfrac{e^x-e^{-x}}2\right)'=\dfrac{e^x+e^{-x}}2=\cosh x[/tex]
so by the chain rule, the derivative reduces to
[tex]y'=\dfrac{2\cosh2x}{\sinh2x}=2\coth2x[/tex]
2. [tex]\sinh3y=\cos2x\implies(\sinh3y)'=(\cos2x)'\implies3\cosh3y\,y'=-2\sin2x[/tex]
The derivative on the left side follows from the same principle as in the first problem. Solving for [tex]y'[/tex], you get
[tex]y'=-\dfrac{2\sin2x}{3\cosh3y}[/tex]
3. [tex]y=\sin^24x\cos3x[/tex]
Product rule:
[tex]y'=(\sin^24x)'\cos3x+\sin^24x(\cos3x)'[/tex]
then power (for the first derivative) and chain rules:
[tex]y'=2\sin4x(4\cos4x)\cos3x-3\sin^24x\sin3x[/tex]
[tex]y'=8\sin4x\cos4x\cos3x-3\sin^24x\sin3x[/tex]
This can be reduced a bit more, but you can stop here since this is one of the answer choices.
4. [tex]\ln(x+y)=e^{x/y}[/tex]
Chain rule for both sides:
[tex](\ln(x+y))'=\left(e^{x/y}\right)'\implies\dfrac{(x+y)'}{x+y}=\left(\dfrac xy\right)'e^{x/y}[/tex]
[tex]\implies\dfrac{1+y'}{x+y}=\left(\dfrac{y-xy'}y^2\right)e^{x/y}[/tex]
I would stop here, but maybe your answer choices are solutions for [tex]y'[/tex] explicitly. If that's the case, solving [tex]y'[/tex] is a purely algebraic exercise.