Use implicit differentiation to find an equation of the tangent line to the curve at the given point.
y sin 12x = x cos 2y, (π/2, π/4)

Respuesta :

Hello:
Use implicit differentiation :  y sin 12x = x cos 2y
y' sin12x+12ycos12x =cos2y -2x y'sin2y
when : x = 
π/2  and     y =π/4 

y' sin12(π/2) +12(π/4)cos12(π/2) =cos2(π/4) -2(π/2) y'sin2(π/4)
y' sin(π/6) +(π/3)cos(π/6) =cos(π/2) -  π y'sin(π/2)


y' (1/2) +(π/3)(√3/2) = -  π 

y' (1/2) =-(π/3)(√3/2)  -  π 
y'  = -π (1+√3)/3
an equation of the tangent line is : y- π/4 = ( -π (1+√3)/3)(x-π/2)

The equation of tangent line is "[tex]3x+y = \frac{7 \pi}{4}[/tex]".

Given equation is:

→ [tex]y \ sin 12x = x \ cos 2y[/tex]

The points,

→ [tex](\frac{\pi}{2} , \frac{\pi}{4} )[/tex]

By differentiating with respect to "x", we get

→ [tex]y(12 \ cos 12x) +sin 12x\frac{dy}{dx} = x(-2sin2y \fracdy}{dx} )+cos 2y[/tex]

At [tex](\frac{\pi}{2}, \frac{\pi}{4} )[/tex],

→ [tex]\frac{\pi}{4} (12 cos 12\frac{\pi}{2} )+sin 12 \frac{\pi}{2} \frac{dy}{dx}= \frac{\pi}{2} (12sin 2\frac{\pi}{2} \frac{dy}{dx} ) +cos 2\frac{\pi}{4}[/tex]

→      [tex]\frac{\pi}{4} (12 cos 6 \pi)+sin 6 \pi \frac{dy}{dx} = - \pi \frac{dy}{dx} +0[/tex]

→                               [tex]3x+0= -\pi \frac{dy}{dx}[/tex]

→                                      [tex]\frac{dy}{dx} =-3[/tex]

hence,

The tangent line equation will be:

→ [tex](y-\frac{\pi}{4} ) = -3(x - \frac{\pi}{2} )[/tex]

    [tex]3x+y = \frac{\pi}{4} +\frac{3 \pi}{2}[/tex]

    [tex]3x+y = \frac{7 \pi}{4}[/tex]

Thus the above approach is the appropriate one.

Learn more about tangent here:

https://brainly.com/question/1600023