What is the exact vale of a trigonometric function of a given angle?
Select True or False for each statement .
sin (5π/6) = - 1/2
tan (27π) = 0
sec (- 11π/3) = - 2√3/3​

What is the exact vale of a trigonometric function of a given angle Select True or False for each statement sin 5π6 12tan 27π 0 sec 11π3 233 class=

Respuesta :

Answer:

1. sin (5π/6) = -1/2 - True

2. tan (27π) = 0 - True

3. sec (-11π/3) = -2√3/3 - True

Answer:

1)  False

2)  True

3)  False

Step-by-step explanation:

From inspection of the attached unit circle, we can see that:

[tex]\boxed{\sin\left(\dfrac{5\pi}{6}\right)=\dfrac{1}{2}}[/tex]

Therefore, the first statement is false.

[tex]\hrulefill[/tex]

The tangent function is periodic with a period of π, meaning that for any integer n:

[tex]\tan(a)=\tan(a+\pi n)[/tex]

[tex]\tan(n\pi)=\tan \pi[/tex]

Therefore:

[tex]\tan(27\pi)=\tan \pi[/tex]

From the unit circle we can see that:

[tex]\tan \pi=\dfrac{\sin \pi}{\cos \pi}=\dfrac{0}{-1}=0[/tex]

Therefore,

[tex]\boxed{\tan(27\pi)=0}[/tex]

Therefore, the second statement is true.

[tex]\hrulefill[/tex]

[tex]\textsf{Using the trigonometric identity\; $\sec x=\dfrac{1}{\cos x}$}:[/tex]

[tex]\sec \left(-\dfrac{11\pi}{3}\right)=\dfrac{1}{\cos \left(-\dfrac{11\pi}{3}\right)}[/tex]

The cosine function is periodic with a period of 2π, meaning that for any integer n:

[tex]\cos (a)=\cos (a + 2\pi n)[/tex]

Therefore:

[tex]\cos \left(-\dfrac{11\pi}{3}\right)=\cos \left(-\dfrac{11\pi}{3}+4\pi\right)=\cos \left(\dfrac{\pi}{3}\right)[/tex]

From the unit circle we can see that:

[tex]\cos \left(\dfrac{\pi}{3}\right)=\dfrac{1}{2}[/tex]

Therefore:

[tex]\sec \left(-\dfrac{11\pi}{3}\right)=\dfrac{1}{\cos \left(-\dfrac{11\pi}{3}\right)}=\dfrac{1}{\cos \left(\dfrac{\pi}{3}\right)}=\dfrac{1}{\frac{1}{2}}=2[/tex]

Therefore, the third statement is false.

Ver imagen semsee45