Use right triangle DCB to find the trig values for angle D. sinD = cosD = tanD =

Answer:
[tex]sin(D)=\frac{35}{37}[/tex]
[tex]cos(D)=\frac{12}{37}[/tex]
[tex]tan(D)=\frac{35}{12}[/tex]
Step-by-step explanation:
Part a) Find [tex]sin(D)[/tex]
we know that
In a right triangle the value of sine of an angle is equal to the opposite side to the angle divided by the hypotenuse
[tex]sin(D)=\frac{CB}{DB}[/tex]
substitute the values
[tex]sin(D)=\frac{35}{37}[/tex]
Part b) Find [tex]cos(D)[/tex]
we know that
In a right triangle the value of cosine of an angle is equal to the adjacent side to the angle divided by the hypotenuse
[tex]cos(D)=\frac{DC}{DB}[/tex]
substitute the values
[tex]cos(D)=\frac{12}{37}[/tex]
Part c) Find [tex]tan(D)[/tex]
we know that
In a right triangle the value of tangent of an angle is equal to the opposite side to the angle divided by the adjacent side to the angle
[tex]tan(D)=\frac{CB}{DC}[/tex]
substitute the values
[tex]tan(D)=\frac{35}{12}[/tex]