Respuesta :

Answer:

[tex]x^{3}y^{3}\sqrt{(\frac{3}{5})y}[/tex]

Step-by-step explanation:

we have

[tex]\sqrt{\frac{3x^{12}y^{10}}{5x^{6}y^{3}}}[/tex]

Rewrite the expression

we know that

[tex]\frac{3x^{12}y^{10}}{5x^{6}y^{3}} =(\frac{3}{5})(\frac{x^{12}}{x^{6}})(\frac{y^{10}}{y^{3}})[/tex]

simplify

[tex](\frac{3}{5})(\frac{x^{12}}{x^{6}})(\frac{y^{10}}{y^{3}})=(\frac{3}{5})x^{6}y^{7}[/tex]

substitute

[tex]\sqrt{(\frac{3}{5})x^{6}y^{7}}=x^{3}y^{3}\sqrt{(\frac{3}{5})y}[/tex]