What is the sum of the interior angles, each interior angle, the central angle, and each exterior angle of a pentagon, a hexagon, an octogon, a nonagon, a decagon and a dodecagon.
Sum of Interior Angles: Formula: (n-2) * 180 -Pentagon: 540° -Hexagon: 720° -Octagon: 900° -Nonagon: 1260° -Decagon: 1440° -Dodecagon: 1800°
Each interior Angle: Formula: [(n-2)*180] / n -Pentagon: 108° -Hexagon: 120° -Octagon: 135° -Nonagon: 140° -Decagon: 144° -Dodecagon: 150°
The sum of the exterior angles of each polygon stated above is equal to 360 degrees. Using the formula: (180-interior angle) * n
The central angle is formed by making a circle in the middle and divide it by the number of sides. Therefore, CA = 360 /n -Pentagon: 72° -Hexagon: 60° -Octagon: 45° -Nonagon: 40° -Decagon: 36° -Dodecagon: 30°