Let f(x) be a function defined for all positive real numbers satisfying the conditions f(x)>0 for all x>0 and f(x−y)=√f(xy)+1 for all x>y>0. Determine f(2009).

Respuesta :

After evaluation, the resultant value of the function f(2009) is 1.9021.

What are functions?

A function in mathematics from a set X to a set Y allocates exactly one element of Y to each element of X.

The sets X and Y are collectively referred to as the function's domain and codomain, respectively.

Any input for x results in a single output for y.

Considering that x is the input value, we would state that y is a function of x.

So, evaluate f(2009) as follows:

Given that f(x) is a function with all positive real numbers satisfying the requirement that f(x) > 0 and for all x > 0 and also:


[tex]\begin{aligned}&f(x-y)=\sqrt{f(x y)+1} \\&x > 0, y > 0 \\&\text { for, } x=1, \text { and } y=\frac{1}{2} \\&f\left(1-\frac{1}{2}\right)=\sqrt{f\left(1 \times \frac{1}{2}\right)+1} \\&f\left(\frac{1}{2}\right)^2=f\left(\frac{1}{2}\right)+1 \\&f\left(\frac{1}{2}\right)=\frac{1+\sqrt{5}}{2}\end{aligned}[/tex]

Now, consider: x = 2009 and y = 0

[tex]\begin{aligned}&f(2009-0)=\sqrt{f(2009 * 0)+1} \\&f(2009)=\sqrt{f(0)+1} \\&f(2009)=\sqrt{f\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}}\right)+1} \\&f(2009)=\sqrt{\sqrt{f\left(\frac{1}{\sqrt{2}} * \frac{1}{\sqrt{2}}\right)+1}+1} \\&f(2009)=\sqrt{\sqrt{f\left(\frac{1}{2}\right)+1}+1} \\&f(2009)=\sqrt{\sqrt{\frac{1+\sqrt{5}}{2}+1}+1} \\&f(2009)=\sqrt{\sqrt{\frac{3+\sqrt{5}}{2}}+1} \\&f(2009)=\sqrt{\sqrt{5.2362}+1} \\&=\sqrt{3.6180} \\&=1.9021\end{aligned}[/tex]

Therefore, after evaluation, the resultant value of the function f(2009) is 1.9021.

Know more about functions here:

https://brainly.com/question/29523308

#SPJ4