Write a matrix equation for the system below. Then solve the equation by using an inverse matrix. You must solve this by hand. Give exact answers. No graphing calculator!

First, let's write the system in the matrix form AX = B:
[tex]\begin{bmatrix}{1} & {2} \\ {-4} & {3}\end{bmatrix}\begin{bmatrix}{x} & \\ {y} & \end{bmatrix}=\begin{bmatrix}{2} & {} \\ {25} & {}\end{bmatrix}[/tex]Now, to solve the system, let's first find the inverse of the matrix A, using the formula below for the inverse of a 2x2 matrix:
[tex]\begin{gathered} A=\begin{bmatrix}{a} & {b} \\ c & {d}\end{bmatrix}\\ \\ A^{-1}=\frac{1}{ad-bc}\begin{bmatrix}{d} & -b \\ {-c} & {a}\end{bmatrix} \end{gathered}[/tex]So we have:
[tex]\begin{gathered} A=\begin{bmatrix}{1} & {2} \\ {-4} & {3}\end{bmatrix}\\ \\ A^{-1}=\frac{1}{3-(-8)}\begin{bmatrix}{3} & -2{} \\ {4} & {1}\end{bmatrix}\\ \\ A^{-1}=\frac{1}{11}\begin{bmatrix}{3} & -2{} \\ {4} & {1}\end{bmatrix}\\ \\ A^{-1}=\begin{bmatrix}{\frac{3}{11}} & -\frac{2}{11}{} \\ {\frac{4}{11}} & {\frac{1}{11}}\end{bmatrix}\\ \end{gathered}[/tex]Now, to solve the system, we can do the following:
[tex]\begin{gathered} AX=B\\ \\ A^{-1}AX=A^{-1}B\\ \\ IX=A^{-1}B\\ \\ X=A^{-1}B \end{gathered}[/tex]Multiplying the inverse matrix and matrix B, we have:
[tex]\begin{gathered} \begin{bmatrix}{\frac{3}{11}} & {-\frac{2}{11}} \\ {\frac{4}{11}} & {\frac{1}{11}}\end{bmatrix}\cdot\begin{bmatrix}{2} & {} \\ 25 & {}\end{bmatrix}=\begin{bmatrix}{\frac{3}{11}}\cdot2+(-\frac{2}{11})\cdot25 & \\ {\frac{4}{11}}\cdot2+\frac{1}{11}\cdot25 & {}\end{bmatrix}\\ \\ =\begin{bmatrix}{\frac{6}{11}}-\frac{50}{11} & \\ {\frac{8}{11}}+\frac{25}{11} & {}\end{bmatrix}=\begin{bmatrix}-\frac{44}{11} & \\ \frac{33}{11} & {}\end{bmatrix}=\begin{bmatrix}-4 & \\ 3 & {}\end{bmatrix} \end{gathered}[/tex]Therefore the solution is x = -4 and y = 3.